Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Although GPS spoofing of individual devices has been extensively examined, little systematic research on swarm spoofing has been conducted. In general, swarm missions may allow each device to navigate independently for different tasks, and it is much more complicated to build corresponding spoofing signals for such general cases. To address this issue, we formulate a general swarm spoofing method to explore the theoretical capabilities and limitations of common cases. We then propose a basic swarm spoofing model to show that, if we try to spoof each receiver precisely, we can only attack a small number of receivers (≤ 9) simultaneously in theory. However, in practice, we often need to deal with many receivers. Therefore, we develop a method that can spoof more receivers with acceptable errors. We present a method to construct spoofing messages and evaluate its effectiveness in practical settings with simulations. Although this work focuses on the GPS system, the proposed ideas can be applied to other GNSSs.more » « lessFree, publicly-accessible full text available June 9, 2026
-
As many mobile devices use Global Navigation Satellite Systems (GNSSs) to determine their locations for control, compromising such systems can result in serious consequences, as shown by existing GPS spoofing attacks. However, most such spoofing attacks focus on the effect of a single spoofer attacking a single receiver. In this paper, we investigate the impacts of a single spoofer on multiple receivers, motivated by research on attacking drone swarms. Our analysis independently shows that, using a single spoofer, multiple receivers at different locations in a spoofing area will see the same location reading. We consider the base case of spoofing four satellites and also the generic case when more satellites are involved in the spoofing attack. More importantly, we conduct real-world experiments to validate our analysis and demonstrate the potential threats to many practical applications. We use off-the-shelf SDR cards for spoofing and consumer GPS receivers for obtaining spoofed location readings. While this method can enable various attacks on mobile devices depending on GPS, it is also applicable to all existing GNSSs, because they use similar principles to determine locations.more » « less
-
Understanding network traffic characteristics of IoT devices plays a critical role in improving both the performance and security of IoT devices, including IoT device identification, classification, and anomaly detection. Although a number of existing research efforts have developed machine-learning based algorithms to help address the challenges in improving the security of IoT devices, none of them have provided detailed studies on the network traffic characteristics of IoT devices. In this paper we collect and analyze the network traffic generated in a typical smart homes environment consisting of a set of common IoT (and non-IoT) devices. We analyze the network traffic characteristics of IoT devices from three complementary aspects: remote network servers and port numbers that IoT devices connect to, flow-level traffic characteristics such as flow duration, and packet-level traffic characteristics such as packet inter-arrival time. Our study provides critical insights into the operational and behavioral characteristics of IoT devices, which can help develop more effective security and performance algorithms for IoT devices.more » « less
-
Although consumer drones have been used in many attacks, besides specific methods such as jamming, very little research has been conducted on systematical methods to counter these drones. In this paper, we develop generic methods to compromise drone position control algorithms in order to make malicious drones deviate from their targets. Taking advantage of existing methods to remotely manipulate drone sensors through cyber or physical attacks (e.g., [1], [2]), we exploited the weaknesses of position estimation and autopilot controller algorithms on consumer drones in the proposed attacks. For compromising drone position control, we first designed two state estimation attacks: a maximum False Data Injection (FDI) attack and a generic FDI attack that compromised the Kalman-Filter-based position estimation (arguably the most popular method). Furthermore, based on the above attacks, we proposed two attacks on autopilot-based navigation, to compromise the actual position of a malicious drone. To the best of our knowledge, this is the first piece of work in this area. Our analysis and simulation results show that the proposed attacks can significantly affect the position estimation and the actual positions of drones. We also proposed potential countermeasures to address these attacks.more » « less
An official website of the United States government
